onetick.ml.impl.models
onetick.ml.impl.models#
- class DNNRegressor(init_params: dict, fit_params: dict)[source]#
Common Deep Neural Network model (Keras based)
- Parameters
init_params (dict) –
- Dictionary with parameters for model initialization and customization. It includes:
- hid_layers_num: int
Number of hidden layers.
- neurons_num_layerN: int
Number of neurons in layer N (N - integer >= 1).
- dropout_layerN: float
Dropout of layer N (N - integer >= 1). Value >= 0 and < 1.
- activation_layerN: Any
Activation function of layer N (N - integer >= 1).
- optimizer: Any
Optimizer used in network training.
fit_params (dict) – Dictionary with parameters for model.fit() function.
init_params – Parameters passed directly to the initialization of the native model.
fit_params – Parameters passed directly to native model .fit() method.
- class XGBRegressor(init_params: dict, fit_params: dict)[source]#
XGBoost regressor model.
- Parameters
init_params (dict) – Parameters passed directly to the initialization of the native model.
fit_params (dict) – Parameters passed directly to native model .fit() method.
- class CatBoostRegressor(init_params: dict, fit_params: dict)[source]#
CatBoostRegressor model.
- Parameters
init_params (dict) – Parameters passed directly to the initialization of the native model.
fit_params (dict) – Parameters passed directly to native model .fit() method.
- init_model(dsf_params=None, init_params=None)[source]#
Init CatBoostRegressor model.
- Parameters
dsf_params (dict) – Dictionary which includes: overfitting_params and loss param (see experiment.init_fit())
init_params (dict) – Parameters passed directly to the initialization of the native CatBoostRegressor model.
- class CascadeForestRegressor(init_params: dict, fit_params: dict)[source]#
- Parameters
init_params (dict) – Parameters passed directly to the initialization of the native model.
fit_params (dict) – Parameters passed directly to native model .fit() method.
- init_model(dsf_params={}, init_params={})[source]#
Initialize model with parameters.
- Parameters
dsf_params (dict) – Dictionary which includes: overfitting_params and loss param (see experiment.init_fit())
init_params (dict) – Parameters passed directly to the initialization of the native model.
- fit(x_train, y_train, eval_set=None)[source]#
Train model with X-Y examples (X - features, Y - targets).
- Parameters
x_train (pandas.DataFrame, numpy.Array, or any model compatible type) – Data with features for model training.
y_train (pandas.DataFrame, numpy.Array, or any model compatible type) – Data with targets for model training. Must be same length as x_train.
eval_set (list of (X, y) tuple pairs, optional) – List of (X, y) tuple pairs to use as validation sets for early-stopping.
- Returns
model_result – Only for models with fit() returning trained model (not inplace training). Depended on which model class used.
- Return type
Any (depended on which model class used).
- class DecisionTreeRegressor(init_params: dict, fit_params: dict)[source]#
DecisionTreeRegressor sklearn model.
- Parameters
init_params (dict) – Parameters passed directly to the initialization of the native model.
fit_params (dict) – Parameters passed directly to native model .fit() method.
- class RegressorModel(init_params: dict, fit_params: dict)[source]#
Abstract base class for features-targets models.
- Parameters
init_params (dict) – Parameters passed directly to the initialization of the native model.
fit_params (dict) – Parameters passed directly to native model .fit() method.
- init_model(dsf_params: dict, init_params: dict)[source]#
Initialize model with parameters.
- Parameters
dsf_params (dict) – Dictionary which includes: overfitting_params and loss param (see experiment.init_fit())
init_params (dict) – Parameters passed directly to the initialization of the native model.
- fit(x_train, y_train, eval_set=None)[source]#
Train model with X-Y examples (X - features, Y - targets).
- Parameters
x_train (pandas.DataFrame, numpy.Array, or any model compatible type) – Data with features for model training.
y_train (pandas.DataFrame, numpy.Array, or any model compatible type) – Data with targets for model training. Must be same length as x_train.
eval_set (list of (X, y) tuple pairs, optional) – List of (X, y) tuple pairs to use as validation sets for early-stopping.
- Returns
model_result – Only for models with fit() returning trained model (not inplace training). Depended on which model class used.
- Return type
Any (depended on which model class used).
- predict(x_test: pandas.core.frame.DataFrame, **kwargs)[source]#
Predict Y by X using already trained model (X - features, Y - targets).
- Parameters
x_test (DataFrame) – Data with features used to predict Y values.
- Returns
y_pred – Predicted Y values.
- Return type
numpy.Array
- save_model(*args, **kwargs)[source]#
Saving of a model to a local file.
- Parameters
args (list) – Arguments goes directly to native model.save_model() function.
kwargs (dict) – Keyword arguments goes directly to native model.save_model() function.
- load_model(*args, experiment=None, **kwargs)[source]#
Loading a model from a local file.
- Parameters
args (list) – Arguments goes directly to native model.load_model() function.
kwargs (dict) – Keyword arguments goes directly to native model.load_model() function.
- Returns
Loaded ML-model (depended on which model class used)
- Return type
Any
- class RandomForestRegressor(init_params: dict, fit_params: dict)[source]#
RandomForestRegressor sklearn model.
- Parameters
init_params (dict) – Parameters passed directly to the initialization of the native model.
fit_params (dict) – Parameters passed directly to native model .fit() method.
- class LGBMRegressor(init_params: dict, fit_params: dict)[source]#
LightGBM regressor model.
- Parameters
init_params (dict) – Parameters passed directly to the initialization of the native model.
fit_params (dict) – Parameters passed directly to native model .fit() method.
- init_model(dsf_params=None, init_params=None)[source]#
Initialize model with parameters.
- Parameters
dsf_params (dict) – Dictionary which includes: overfitting_params and loss param (see experiment.init_fit())
init_params (dict) – Parameters passed directly to the initialization of the native model.
- save_model(*args, **kwargs)[source]#
Saving of LGBMRegressor model to a local file.
- Parameters
args (list) – Arguments goes directly to native model.booster_.save_model() function.
kwargs (dict) – Keyword arguments goes directly to native model.booster_.save_model() function.
- load_model(path, experiment=None, **kwargs)[source]#
Loading a model from a local file.
- Parameters
path (str, pathlib.Path) – Path to the model file.
kwargs (dict) – Keyword arguments goes directly to native lightgbm.Booster.
- Returns
model – Loaded LGBMRegressor model.
- Return type
Any (depended on which model class used)
- class DummyRegressor(init_params: dict, fit_params: dict)[source]#
Dummy regressor class used for tests. Don’t fit or train, just implements methods to call.
- Parameters
init_params (dict) – Parameters passed directly to the initialization of the native model.
fit_params (dict) – Parameters passed directly to native model .fit() method.
- init_model(dsf_params={}, init_params={})[source]#
Initialize model with parameters.
- Parameters
dsf_params (dict) – Dictionary which includes: overfitting_params and loss param (see experiment.init_fit())
init_params (dict) – Parameters passed directly to the initialization of the native model.
- fit(x_train, y_train, eval_set=None)[source]#
Train model with X-Y examples (X - features, Y - targets).
- Parameters
x_train (pandas.DataFrame, numpy.Array, or any model compatible type) – Data with features for model training.
y_train (pandas.DataFrame, numpy.Array, or any model compatible type) – Data with targets for model training. Must be same length as x_train.
eval_set (list of (X, y) tuple pairs, optional) – List of (X, y) tuple pairs to use as validation sets for early-stopping.
- Returns
model_result – Only for models with fit() returning trained model (not inplace training). Depended on which model class used.
- Return type
Any (depended on which model class used).